2-Methoxystypandrone inhibits signal transducer and activator of transcription 3 and nuclear factor-κB signaling by inhibiting Janus kinase 2 and IκB kinase
نویسندگان
چکیده
Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) or the nuclear factor-κB (NF-κB) pathway occurs frequently in cancer cells and contributes to oncogenesis. The activation of Janus kinase 2 (JAK2) and IκB kinase (IKK) are key events in STAT3 and NF-κB signaling, respectively. We have identified 2-methoxystypandrone (2-MS) from a traditional Chinese medicinal herb Polygonum cuspidatum as a novel dual inhibitor of JAK2 and IKK. 2-MS inhibits both interleukin-6-induced and constitutively-activated STAT3, as well as tumor necrosis factor-α-induced NF-κB activation. 2-MS specifically inhibits JAK and IKKβ kinase activities but has little effect on activities of other kinases tested. The inhibitory effects of 2-MS on STAT3 and NF-κB signaling can be eliminated by DTT or glutathione and can last for 4 h after a pulse treatment. Furthermore, 2-MS inhibits growth and induces death of tumor cells, particularly those with constitutively-activated STAT3 or NF-κB signaling. We propose that the natural compound 2-MS, as a potent dual inhibitor of STAT3 and NF-κB pathways, is a promising anticancer drug candidate.
منابع مشابه
JAK-STAT pathway and JAK inhibitors: a primer for dermatologists
Background: All cellular events depend upon the DNA synthesis and gene expression involving complex interplay between ligands such as interleukins and interferons, with various cell membrane receptors. These ligand-receptors interactions transmit signals within the cell via numerous signal transduction pathways to affect gene expression. Janus kinase/signal transducer and activator of transcrip...
متن کاملBAY 11-7082 Is a Broad-Spectrum Inhibitor with Anti-Inflammatory Activity against Multiple Targets
BAY 11-7082 (BAY) is an inhibitor of κB kinase (IKK) that has pharmacological activities that include anticancer, neuroprotective, and anti-inflammatory effects. In this study, BAY-pharmacological target pathways were further characterized to determine how this compound simultaneously suppresses various responses. Primary and cancerous (RAW264.7 cells) macrophages were activated by lipopolysacc...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملDysregulated Signaling Pathways in Glioblastoma Cancer Stem-Like Cells: Potential Targets for Therapeutic Intervention
Submit Manuscript | http://medcraveonline.com Abbreviations: CSCs: Cancer Stem-Like Cells; EGFR: Epidermal Growth Factor Receptor; GBM: Glioblastoma Multiforme; JAK: Janus Tyrosine Kinase; MTOR: Mechanistic Target of Rapamycin; MAPK: Mitogen-Activated Protein Kinase; NF1: Neurofibromin-1; NF-κB: Nuclear Factor-Kappa B; PI3K: Phosphoinositide-3Kinase; PDGFRA: Platelet Derived Growth Factor Recep...
متن کاملAciculatin Inhibits Granulocyte Colony-Stimulating Factor Production by Human Interleukin 1β-Stimulated Fibroblast-Like Synoviocytes
The expression of granulocyte colony-stimulating factor (G-CSF), the major regulator of neutrophil maturation, by human fibroblast-like synoviocytes (FLS) can be stimulated by the inflammatory cytokine interleukin-1β (IL-1β). G-CSF is known to contribute to the pathologic processes of destructive arthritis, but the induction mechanism remains unknown. The aims of this study were to identify the...
متن کامل